Efficiency in exponential time for domination-type problems
نویسندگان
چکیده
منابع مشابه
Efficiency in exponential time for domination-type problems
Wedesign fast exponential time algorithms for some intractable graph-theoretic problems. Ourmain result states that aminimum optional dominating set in a graph of order n can be found in time O∗(1.8899n). Ourmethods to obtain this result involvematching techniques. The list of the considered problems includes Minimum Maximal Matching, 3Colourability, Minimum Dominating Edge Set, Minimum Connect...
متن کاملThe Domination Heuristic for LP-type Problems
Certain geometric optimization problems, for example finding the smallest enclosing ellipse of a set of points, can be solved in linear time by simple randomized (or complicated deterministic) combinatorial algorithms. In practice, these algorithms are enhanced or replaced with heuristic variants that are faster but do not come with a theoretical runtime guarantee. In this paper, we introduce a...
متن کاملComplexity of Domination-Type Problems in Graphs
Many graph parameters are the optimal value of an objective function over selected subsets S of vertices with some constraint on how many selected neighbors vertices in S, and vertices not in S, can have. Classic examples are minimum dominating set and maximum independent set. We give a characterization of these graph parameters that unifies their definitions, facilitates their common algorithm...
متن کاملExponential Domination in Subcubic Graphs
As a natural variant of domination in graphs, Dankelmann et al. [Domination with exponential decay, Discrete Math. 309 (2009) 5877-5883] introduced exponential domination, where vertices are considered to have some dominating power that decreases exponentially with the distance, and the dominated vertices have to accumulate a sufficient amount of this power emanating from the dominating vertice...
متن کاملDomination with exponential decay
Let G be a graph and S ⊆ V (G). For each vertex u ∈ S and for each v ∈ V (G) − S, we define d(u, v) = d(v, u) to be the length of a shortest path in 〈V (G)−(S−{u})〉 if such a path exists, and∞ otherwise. Let v ∈ V (G). We define wS(v) = ∑ u∈S 1 2d(u,v)−1 if v 6∈ S, and wS(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have wS(v) ≥ 1, then S is an exponential dominating set. The smallest cardinalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2008
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.05.035